In our previous research, propagation characteristics and combined harmonic generation of feature guided waves (FGWs) in welded joints of plate structure, were analyzed theoretically and observed numerically. Circumferential ultrasonic guided waves find extensive applications in assessing rotating structures, highlighting the importance of investigating the propagation characteristics of circumferential feature guided waves (CFGWs) in such revolved topological waveguides. In this study, propagation characteristics of CFGW in revolved topological waveguides are investigated. Semi-analytical finite element (SAFE) method in conjunction with a perfectly matched layer (PML) within a cylindrical coordinate system is used to explore the modal and dispersion characteristics of CFGWs. Second-harmonic generation (SHG) of CFGWs is further analyzed and discussed both in theoretical and numerical manner. Cumulative SHG of selected CFGW mode pairs, propagation in the welded joint of the revolved topological waveguide, is observed successfully. The obtained results demonstrate that the energy trapping effect of CFGWs in the welded joint of revolved topological waveguide amplifies the generation of cumulative second harmonics, thereby enhancing the measurability of SHG of CFGW. This investigation reveals the potential of damage assessment in revolved topological waveguides by CFGWs.
Read full abstract