We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales. The features of the associated singularity spectra capture the differences in the dynamic rules behind the self-organized critical states at adiabatic driving and their pertinent response to the increased driving rate, which alters the process of stochasticity and causes a loss of avalanche scaling. In sequences of outflow current carried by dissipative avalanches, the first return distributions follow the q-Gaussian law in the adiabatic limit. They appear to follow different laws at an intermediate scale with an increased driving rate, describing different pathways to the gradual loss of cooperative behavior in these two models. The robust appearance of cyclical trends and their multifractal modulation thus represents another remarkable feature of self-organized dynamics beyond the scaling of avalanches. It can also help identify the prominence of self-organizational phenomenology in an empirical time series when underlying interactions and driving modes remain hidden.
Read full abstract