Let B^{H,K}={B^{H,K}(t), t geq 0} be a d-dimensional bifractional Brownian motion with Hurst parameters Hin (0,1) and Kin (0,1]. Assuming dgeq 2, we prove that the renormalized self-intersection local time \t\t\t∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt)\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned} \\int^{T}_{0} \\int^{t}_{0}\\delta \\bigl(B^{H,K}(t)-B^{H,K}(s) \\bigr)\\,ds\\,dt-\\mathbb{E} \\biggl( \\int^{T}_{0} \\int^{t}_{0}\\delta \\bigl(B^{H,K}(t)-B^{H,K}(s) \\bigr)\\,ds\\,dt \\biggr) \\end{aligned}$$ \\end{document} exists in L^{2} if and only if HKd< 3/2, where δ denotes the Dirac delta function. Our work generalizes the result of the renormalized self-intersection local time for fractional Brownian motion.
Read full abstract