The hybrid meta density functionals M05-2X and M06-2X have been shown to provide broad accuracy for main group chemistry. In the present article we make the functional form more flexible and improve the self-interaction term in the correlation functional to improve its self-consistent-field convergence. We also explore the constraint of enforcing the exact forms of the exchange and correlation functionals through second order (SO) in the reduced density gradient. This yields two new functionals called M08-HX and M08-SO, with different exact constraints. The new functionals are optimized against 267 diverse main-group energetic data consisting of atomization energies, ionization potentials, electron affinities, proton affinities, dissociation energies, isomerization energies, barrier heights, noncovalent complexation energies, and atomic energies. Then the M08-HX, M08-SO, M05-2X, and M06-2X functionals and the popular B3LYP functional are tested against 250 data that were not part of the original training data for any of the functionals, in particular 164 main-group energetic data in 7 databases, 39 bond lengths, 38 vibrational frequencies, and 9 multiplicity-changing electronic transition energies. These tests include a variety of new challenges for complex systems, including large-molecule atomization energies, organic isomerization energies, interaction energies in uracil trimers, and bond distances in crowded molecules (in particular, cyclophanes). The M08-HX functional performs slightly better than M08-SO and M06-2X on average, significantly better than M05-2X, and much better than B3LYP for a combination of main-group thermochemistry, kinetics, noncovalent interactions, and electronic spectroscopy. More important than the slight improvement in accuracy afforded by M08-HX is the conformation that the optimization procedure works well for data outside the training set. Problems for which the accuracy is especially improved by the new M08-HX functional include large-molecule atomization energies, noncovalent interaction energies, conformational energies in aromatic peptides, barrier heights, multiplicity-changing excitation energies, and bond lengths in crowded molecules.
Read full abstract