All self-dual analogs of elementary functional gates have been considered, the use of which allows for the synthesis of self-dual circuit implementations of arbitrary Boolean functions. In this case, two synthesis methods can be used, each one based on the property of any Boolean function to be transformed into a self-dual function using one additional variable. The first method involves replacing all non-self-dual functional gates in the device structure with self-dual analogs. The second one involves obtaining a self-dual function from the original formula. The study conducted modeling of self-dual functional gates in pulse mode of operation. It has been shown that all self-dual functional gates, except for those implementing equivalence and nonequivalence functions (modulo-2 addition), are fully self-checkable with respect to stuck-at faults when checking computations based on the belonging of the generated functions to the class of self-dual Boolean functions. However, the gates that implement the mentioned functions require additional monitoring. For them, error masking occurs due to the simultaneous distortion of signals on both combinations in a pair. This feature of these self-dual functional gates should be taken into account when developing controllable self-checking digital computing devices and systems. The article provides an example of using methods for constructing self-dual circuit implementations. The obtained results can be used in the synthesis of controllable self-dual computing devices and systems.
Read full abstract