Abstract

We prove that the MacWilliams duality holds for bent functions. It enables us to derive the concept of formally self-dual Boolean functions with respect to their near weight enumerators. By using this concept, we prove the Gleason-type theorem on self-dual bent functions. As an application, we provide the total number of (self-dual) bent functions in two and four variables obtaining from formally self-dual Boolean functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.