Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA.