The investigation of the self-assembly of amphiphilic molecules and the formation of micelles/vesicles has attracted significant attention. However, in situ and real-time methods for such studies are rare. Here, a surface-sensitive second harmonic generation (SHG) technique was applied to study the formation of vesicles in solutions of an anti-cancer drug, doxorubicin (DOX), and a generally used surfactant (sodium bis (2-ethylhexyl) sulfosuccinate, AOT). With the aid of two-photon fluorescence (TPF), Rayleigh scattering and TEM, we revealed the structural evolution of the aggregated micelles/vesicles. It was found that AOT and DOX molecules rapidly aggregated and formed micelles in the solution. The residual DOX then acted as a "glue" that induced the aggregating/growing of the micelles and the transformation from aggregates to vesicles. The existence of lipid films, which was considered as the necessary intermediate state for vesicle formation, was excluded via the SHG observations, indicating that hollow shells may be directly transformed from solid aggregated micelles in the self-assembly formation of complex vesicles. The combined spectroscopic methods were also used to investigate the formation of vesicles from a commonly used lipid (i.e., 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, DOPG) from its stacked bilayers. The swelling, curving and sealing of the DOPG bilayers for vesicle formation was monitored and clear dynamics were revealed. This work shows that the vesicle formation mechanism varies with the initial state of the surfactant/lipid molecules. It not only demonstrates the capability of the combined spectroscopic methods in investigating the aggregated systems but also provides new insight for understanding the formation of vesicles.
Read full abstract