Abstract

The self-assembly of amphiphilic molecules in solution is a ubiquitous process in both natural and synthetic systems. The ability to effectively control the structure and properties of these systems is essential for tuning the quality of their functionality, yet the underlying mechanisms governing the transition from molecules to assemblies have not been fully resolved. Here we describe how amphiphilic self-assembly can be preceded by liquid-liquid phase separation. The assembly of a model block co-polymer system into vesicular structures was probed through a combination of liquid-phase electron microscopy, self-consistent field computations and Gibbs free energy calculations. This analysis shows the formation of polymer-rich liquid droplets that act as a precursor in the bottom-up formation of spherical micelles, which then evolve into vesicles. The liquid-liquid phase separation plays a role in determining the resulting vesicles' structural properties, such as their size and membrane thickness, and the onset of kinetic traps during self-assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.