In this paper, we introduce two inertial self-adaptive projection and contraction methods for solving the pseudomonotone variational inequality problem with a Lipschitz-continuous mapping in real Hilbert spaces. The adaptive stepsizes provided by the algorithms are simple to update and their computations are more efficient and flexible. Also we prove some weak and strong convergence theorems without prior knowledge of the Lipschitz constant of the mapping. Finally, we present some numerical experiments to demonstrate the effectiveness of the proposed algorithms by comparisons with related methods and some applications of the proposed algorithms to the image deblurring problem.
Read full abstract