Abstract

In this work, we study the split feasibility problem (SFP) in the framework of p-uniformly convex and uniformly smooth Banach spaces. We propose an iterative scheme with inertial terms for seeking the solution of SFP and then prove a strong convergence theorem for the sequences generated by our iterative scheme under implemented conditions on the step size which do not require the computation of the norm of the bounded linear operator. We finally provide some numerical examples which involve image restoration problems and demonstrate the efficiency of the proposed algorithm. The obtained result of this paper complements many recent results in this direction and seems to be the first one to investigate the SFP outside Hilbert spaces involving the inertial technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.