Abstractβ-Seleno-α-amino acids, known as selenocysteine (Sec) derivatives, have emerged as important targets because of their role in chemical biology, not only as part of selenoproteins with important redox properties, but also because of their activity as antivirals or metabolites effective in inhibiting carcinogenesis. In addition, there is demand for this type of compounds due to their use in native chemical ligation to construct large peptides. Therefore, this review summarizes the various synthetic methods that have been published to construct Sec derivatives. Most of them involve the generation of the C–Se bond by nucleophilic substitution reactions, but other reactions such as radical or multicomponent strategies are also reported. Of particular importance is the Se-Michael addition of Se-nucleophiles to chiral bicyclic dehydroalanines, in which the stereogenic center is generated under complete stereocontrol.1 Introduction2 Previously Reviewed Synthesis of Sec3 Retrosynthesis of Sec Derivatives4 Sec Derivatives by Nucleophilic Substitutions5 Sec Derivatives by Radical Processes6 Sec Derivatives by 1,4-Conjugate Additions7 Conclusion
Read full abstract