Abstract

Small molecule-based electrophilic compounds such as 1-chloro-2,4-dinitrobenzene (CDNB) and 1-chloro-4-nitrobenzene (CNB) are currently being used as inhibitors of cysteine- and selenocysteine-containing proteins. CDNB has been used extensively to determine the activity of glutathione S-transferase and to deplete glutathione (GSH) in mammalian cells. Also, CDNB has been shown to irreversibly inhibit thioredoxin reductase (TrxR), a selenoenzyme that catalyses the reduction of thioredoxin (Trx). Mammalian TrxR has a C-terminal active site motif, Gly-Cys-Sec-Gly, and both the cysteine and selenocysteine residues could be the targets of the electrophilic reagents. In this paper we report on the stability of a series of cysteine and selenocysteine derivatives that can be considered as models for the selenoenzyme-inhibitor complexes. We show that these derivatives react with H2 O2 to generate the corresponding selenoxides, which undergo spontaneous elimination to produce dehydroalanine. In contrast, the cysteine derivatives are stable towards such elimination reactions. We also demonstrate, for the first time, that the arylselenium species eliminated from the selenocysteine derivatives exhibit significant redox activity by catalysing the reduction of H2 O2 in the presence of GSH (GPx (glutathione peroxidase)-like activity), which suggests that such redox modulatory activity of selenium compounds may have a significant effect on the cellular redox state during the inhibition of selenoproteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.