(-)-Deprenyl ( L-deprenyl, selegiline hydrochloride), a selective monoamine oxidase B (MAO-B) inhibitor employed in the pharmacological therapy of Parkinson's disease, increases neuronal survival in both animal models of neurodegenerative disorders and acute CNS lesions. Despite intensive investigations, the mechanisms of (-)-deprenyl-mediated neuroprotection remain poorly understood. To test the hypothesis that (-)-deprenyl might have a beneficial effect not only on neuronal survival, but also on axonal regeneration, we describe here experiments performed in vitro and in vivo which clearly demonstrate that (-)-deprenyl fails to promote axonal regeneration of severed rat retinal ganglion cells (RGCs). Furthermore, (-)-deprenyl was not able to overcome free-radical-induced RGC axon degeneration. These results challenge the notion that (-)-deprenyl might be useful as a monotherapy for acute CNS lesions and give rise to a more critical viewpoint of the trophic-like function of this widely used therapeutic agent.
Read full abstract