Nano bimetallic oxides as nanoproteases have the great advantages in the heterogeneous hydrolysis of proteins. Here, we report that bimetallic delafossite CuFeO2 submicron particles (CuFeO2 SMPs) display a high protease activity towards selective cleavage of peptide bond involving hydrophobic residue at 25 °C. CuFeO2 SMPs have excellent regeneration performance with high structural stability. The strong Lewis acidity of Fe3+ and the strong nucleophilicity of Cu+ bound hydroxyl groups are both necessary for the high protease activity of CuFeO2 SMPs. Low-valent metal ion has a great advantage in that low-valent Cu+ bound hydroxyl has strong nucleophilicity, resulting in promotion of protein hydrolysis via high-efficient bimetallic catalysis. This study provides evidence that the protease activity of CuFeO2 SMPs depends on metal ion-bound hydroxyls on their surface. Our findings highlight that the valence of metal ions in artificial protease and their surface hydroxyls are two important factors that determine their catalytic efficiency.
Read full abstract