The structure and surface composition of binary oxides consisting of CrO(x) and VO(x) dispersed on alumina and their effects on the rate and selectivity of oxidative dehydrogenation (ODH) of propane were examined and compared with those for CrO(x) and VO(x) dispersed on alumina. VO(x) deposition on an equivalent CrO(x) monolayer on alumina and deposition of CrO(x) on an equivalent monolayer of VO(x) deposited on alumina led to CrVO(4) species during thermal treatment with concomitant reduction of Cr(6+) to Cr(3+). Autoreduction of Cr(6+) to Cr(3+) is also detected for CrO(x), even without the presence of VO(x). Infrared spectroscopy of NO adsorbed at 153 K probes the relative abundance of alumina and of V(5+), Cr(3+), and Cr(6+) at surfaces. This technique detects differences in the surface composition of VO(x)/CrO(x)()/Al(2)O(3) and CrO(x)/VO(x)/Al(2)O(3). The first of these samples is enriched in VO(x) relative to CrO(x) compared with the second sample. Consistent with this finding, VO(x)/CrO(x)/Al(2)O(3) and CrO(x)/VO(x)/Al(2)O(3) are distinguishable in their ODH activities and propene selectivities. The highest ODH activity and propene selectivity is observed for VO(x)/CrO(x)/Al(2)O(3), which exhibits a surface enriched in VO(x) and having a low surface concentration of Cr(6+).