Early revascularization for patients with acute myocardial infarction (AMI) is of outmost importance in limiting infarct size and associated complications, as well as for improving long-term survival and outcomes. However, reperfusion itself may further damage the myocardium and increase the infarct size, a condition commonly recognized as myocardial reperfusion injury. Several strategies have been developed for limiting the associated with reperfusion myocardial damage, including hypothermia. Hypothermia has been shown to limit the degree of infarct size increase, when started before reperfusion, in several animal models. Systemic hypothermia, however, failed to show any benefit, due to adverse events and potentially insufficient myocardial cooling. Recently, the novel technique of intracoronary selective hypothermia is being tested, with preclinical and clinical results being of particular interest. Therefore, in this review, we will describe the pathophysiology of myocardial reperfusion injury and the cardioprotective mechanics of hypothermia, report the animal and clinical evidence in both systemic and selective hypothermia and discuss the potential future directions and clinical perspectives in the context of cardioprotection for myocardial reperfusion injury.