The central tenet of ecomorphology links ecological and morphological variation through the process of selection. Traditionally used to rationalise morphological differences between taxa, an ecomorphological approach is increasingly being utilised to study morphological differences expressed through ontogeny. Elasmobranchii (sharks, rays and skates) is one clade in which such ontogenetic shifts in body form have been reported. Such studies are limited to a relatively small proportion of total elasmobranch ecological and morphological diversity, and questions remain regarding the extent to which ecological selection are driving observed morphometric trends. In this study, we report ontogenetic growth trajectories obtained via traditional linear morphometrics from a large data set of the brown smoothhound shark (Mustelus henlei). We consider various morphological structures including the caudal, dorsal and pectoral fins, as well as several girth measurements. We use an ecomorphological approach to infer the broad ecological characteristics of this population and refine understanding of the selective forces underlying the evolution of specific morphological structures. We suggest that observed scaling trends in M. henlei are inconsistent with migratory behaviour, but do not contradict a putative trophic niche shift. We also highlight the role of predation pressure and sex-based ecological differences in driving observed trends in morphometry, a factor which has previously been neglected when considering the evolution of body form in sharks.
Read full abstract