To examine the role of delta-opioid receptors in the modulation of striatal acetylcholine (ACh) release, the action of D-Pen2,L-Pen5-enkephalin, a selective delta-opioid receptor agonist, was tested on [3H]ACh release from slices of the rat caudate-putamen. Slices, incubated with [3H]choline, were superfused with a physiological buffer and stimulated twice by exposure to a high potassium (K+) concentration. In the absence of a cholinesterase inhibitor, 1 microM D-Pen2,L-Pen5-enkephalin produced a 46 and 35% decrease in the release of [3H]ACh evoked by 15 and 25 mM K+, respectively. The depressant action of the enkephalin analogue was concentration dependent, with a maximal effect on K+-evoked [3H]ACh release occurring at 1.0 microM, and was completely blocked in the presence of the delta-opioid receptor selective antagonist, ICI 174864 (1 microM). In the presence of the cholinesterase inhibitors physostigmine (10 microM) and neostigmine (10 microM), or the muscarinic receptor agonist oxotremorine (10 microM), D-Pen2,L-Pen5-enkephalin did not depress the K+-evoked release of [3H]ACh. Atropine (1 microM) blocked the inhibitory effect of physostigmine on the depressant action of D-Pen2,L-Pen5-enkephalin. The results of this study indicate that delta-opioid receptor activation is associated with an inhibition of striatal ACh release, but this opioid-cholinergic interaction is not apparent under conditions of presynaptic muscarinic receptor activation.
Read full abstract