Advances in DNA sequencing technologies allow the sequencing of whole genomes of thousands of individuals and provide several million single nucleotide polymorphisms (SNPs) per individual. These data combined with precise and high-throughput phenotyping enable genome-wide association studies (GWAS) and the identification of SNPs underlying traits with complex genetic architectures. The identified causal SNPs and estimated allelic effects could then be used for advanced marker-assisted selection (MAS) in breeding programs. But could such MAS compete with the broadly used genomic selection (GS)? This question is of particular interest for the lengthy tree breeding strategies. Here, with our new software "SNPscan breeder," we simulated a simple tree breeding program and compared the impact of different selection criteria on genetic gain and inbreeding. Further, we assessed different genetic architectures and different levels of kinship among individuals of the breeding population. Interestingly, apart from progeny testing, GS using gBLUP performed best under almost all simulated scenarios. MAS based on GWAS results outperformed GS only if the allelic effects were estimated in large populations (ca. 10,000 individuals) of unrelated individuals. Notably, GWAS using 3,000 extreme phenotypes performed as good as the use of 10,000 phenotypes. GS increased inbreeding and thus reduced genetic diversity more strongly compared to progeny testing and GWAS-based selection. We discuss the practical implications for tree breeding programs. In conclusion, our analyses further support the potential of GS for forest tree breeding and improvement, although MAS may gain relevance with decreasing sequencing costs in the future.
Read full abstract