Bicycle-sharing is experiencing rapidly as a low-carbon transport mode of travel, with the advantages of low cost and sustainability. Bicycle-sharing operators use electronic fence parking points to manage bicycle-sharing, but it is too time-consuming and impractical to manage them individually. Therefore, it is necessary to cluster the electronic fence parking points and implement regionalized management. This study uses a Mean-shift clustering algorithm to cluster the electronic fence parking points on Xiamen Island, construct a bicycle-sharing dispatching station, and divide the management area. Singular value decomposition is employed to analyze the travel demand patterns of bicycle-sharing and travel characteristics. In addition, we constructed regression models to explore the relationship between the urban built environment and bicycle-sharing trips during the morning and evening peak hours. The study results show that: (1) The 73 dispatching stations constructed cover 86.72% of the bicycle-sharing data, with a good clustering effect. (2) The travel demand for bicycle-sharing shows multiple patterns and different characteristics in different spatial and temporal distributions, which are influenced by land use. (3) There are spatial and temporal differences in the impact of the urban built environment on bicycle-sharing trips, especially residential and enterprise poi densities have opposite effects on shared bicycle-sharing during morning and evening peak hours. The research results of this paper can serve in the planning of bicycle-sharing dispatch stations and the differentiated management and dispatch of bicycle-sharing, which can reduce operating costs and promote the development of sustainable urban transport.