The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle's diffusiophoretic motion is analyzed. We found that the inner core's hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.
Read full abstract