Chemical looping (CL) has emerged as a promising approach in the oxidative dehydrogenation (ODH) of light alkanes, offering an opportunity for significant reductions in emissions and energy consumption in the ethylene and propylene production industry. While high olefin yields are achievable via CL, the material requirements (e.g., electronic and geometric structures) that prevent the total conversion of alkanes to CO x are not clearly understood. This review aims to give a concise understanding of the nucleophilic oxygen species involved in the selective reaction pathways for olefin production as well as of the electrophilic oxygen species that promote an overoxidation to CO x products. It further introduces advanced characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, electron paramagnetic resonance spectroscopy, and resonant inelastic X-ray scattering, which have been employed successfully in identifying such reactive oxygen species. To mitigate CO x formation and enhance olefin selectivity, material engineering solutions are discussed. Common techniques include doping of the bulk or surface and the deposition of functional coatings. In the context of energy consumption and CO2 intensity, techno-economic assessments of CL-ODH systems have predicted energy savings of up to 80% compared to established olefin production processes such as steam cracking or dehydrogenation. Finally, although their practical application has been limited to date, the potential advantages of the use of fluidized bed reactors in CL-ODH are presented.
Read full abstract