Abstract

AbstractThe production of atomically thin transition‐metal dichalcogenides (TMDs) has been investigated through various top‐to‐down exfoliation methods, such as mechanical and chemical exfoliation, while large‐scale chemical exfoliation is sluggish and needs over ten hours to achieve atomically thin TMDs. Herein, a new strategy is reported for exfoliating bulk MoS2 into two/three‐layer flakes within tens of seconds through a mild electrochemical treatment. This exfoliation method is driven by a lateral inward oxidation reaction starting from the typical layer edge with a rapid depth penetration, whereby a stacked few‐layer (two/three layers) structure is ultimately formed. This efficient reaction process is monitored based on an individual MoS2 on‐chip device combined with in situ Raman and cross‐sectional scanning transmission electron microscopy, and the uniformity of thickness is demonstrated. This preferentially initiated method can be also extended to produce few‐layer MoSe2 and the selective extraction mechanism is assumed to be related to intrinsic layer‐dependent energy band properties. Moreover, the special reassembled few‐layer MoS2 possesses great performance as functional materials in electrocatalysis (127 mV overpotential for hydrogen evolution reaction) and surface‐enhanced Raman spectroscopy (105 enhancement factor). These results illustrate the broad prospects of the reassembled few‐layer MoS2 for optics, catalysis, and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.