Urban, traffic-related air pollution remains a concern to health-care and environmental professionals, with mounting evidence connecting diverse disease conditions with exposure. Wildlife species such as European starlings (Sturnus vulgaris) cohabit urban neighborhoods and may serve as sentinels for these contaminants. In this novel approach, we use passive, personal-type air samplers to provide site-specific measurements of nitrogen dioxide (NO2), sulfur dioxide (SO2) and volatile organic compounds (VOCs, such as benzene, toluene, ethylbenzene, and xylenes, or BTEX), and account for the effects of confounding environmental factors when teasing out the responses to exposure. This study examines biomarkers of exposure to predominately traffic-related, urban air contaminants in European starlings, including morphometric measurements, immunotoxicology, oxidative stress and hepatic detoxification, and analyses responses in the context of multilayered factors including year, hatch date, weather and location, confirming that this experimental approach and the selected health indicators can be used for comparing locations with different levels of contaminants.