For any earthquake, the slipping fault and the source of high-frequency seismic waves, by and large, coincide. On a more local scale, however, the areas of high seismic slip rate and of increased high-frequency radiation output (seismic luminosity) need not match. To study in some detail how slip rate and seismic luminosity are interrelated, a systematic study is performed that uses 251 records of teleseismic P waves from 23 intermediate-depth earthquakes of magnitude 6.8 and above. From a broadband trace we extract two time histories: (1) displacement and (2) 0.5–2.5 Hz band-passed and squared velocity, or ``HF power'', and calculate correlation coefficient, ρ between the two. To reduce the bias related to formation of P coda, a special procedure is applied to data. We estimated the average value ρ = 0.52 (range of event averages 0.35 to 0.65) for the correlation coefficient between the radiated time histories for displacement and ``HF power'', which is considerably below the ``ideal'' value of unity. We argue that the same or even lower value characterizes the degree of slip rate - seismic luminosity correlation at the fault. Two factors may contribute to the revealed decorrelation: (1) random fluctuations of observed HF power (inevitable for a signal with a limited bandwidth), and (2) the genuine mismatch of slip rate and mean luminosity. We show that these factors, acting separately, would result in the ρ values equal to, correspondingly, 0.72 and 0.80. We also show that genuine decorrelation is statistically significant. We conclude that the observed values of ρ indicate genuine differences between the distributions of the slip rate and the seismic luminosity over the fault area. These results provide important constraints both for the accurate wide-band simulation of strong ground motion and for theoretical dynamic source models.