Most existing amplitude variation with offset (AVO) inversion methods are based on the Zoeppritz’s equation or its approximations. These methods assume that the amplitude of seismic data depends only on the reflection coefficients, which means that the wave-propagation effects, such as geometric spreading, attenuation, transmission loss, and multiples, have been fully corrected or attenuated before inversion. However, these requirements are very strict and can hardly be satisfied. Under a 1D assumption, reflectivity-method-based inversions are able to handle transmission losses and internal multiples. Applications of these inversions, however, are still time-consuming and complex in computation of differential seismograms. We have evaluated an inversion methodology based on the vectorized reflectivity method, in which the differential seismograms can be calculated from analytical expressions. It is computationally efficient. A modification is implemented to transform the inversion from the intercept time and ray-parameter domain to the angle-gather domain. AVO inversion is always an ill-posed problem. Following a Bayesian approach, the inversion is stabilized by including the correlation of the P-wave velocity, S-wave velocity, and density. Comparing reflectivity-method-based inversion with Zoeppritz-based inversion on a synthetic data and a real data set, we have concluded that reflectivity-method-based inversion is more accurate when the propagation effects of transmission losses and internal multiples are not corrected. Model testing has revealed that the method is robust at high noise levels.
Read full abstract