Cropland segmentation of satellite images is an essential basis for crop area and yield estimation tasks in the remote sensing and computer vision interdisciplinary community. Instead of common pixel-level segmentation results with salt-and-pepper effects, a parcel-level output conforming to human recognition is required according to the clients' needs during the model deployment. However, leveraging CNN-based models requires fine-grained parcel-level labels, which is an unacceptable annotation burden. To cure these practical pain points, in this paper, we present PARCS, a holistic deployment-oriented AI system for PARcel-level Cropland Segmentation. By consolidating multi-disciplinary knowledge, PARCS has two algorithm branches. The first branch performs pixel-level crop segmentation by learning from limited labeled pixel samples with an active learning strategy to avoid parcel-level annotation costs. The second branch aims at generating the parcel regions without a learning procedure. The final parcel-level segmentation result is achieved by integrating the outputs of these two branches in tandem. The robust effectiveness of PARCS is demonstrated by its outstanding performance on public and in-house datasets (an overall accuracy of 85.3% and an mIoU of 61.7% on the public PASTIS dataset, and an mIoU of 65.16% on the in-house dataset). We also include subjective feedback from clients and discuss the lessons learned from deployment.