This paper presents the new design of Hybrid Excitation Flux Switching Motor (HEFSM) using segmental rotor structure. HEFSMs are those that consist all the excitation flux sources at their stator with robust rotor structure. The rotor is designed as segmental due to the reason that segmental rotor has ability to yield the magnetic path for conveying the field flux to nearby stator armature coil with respect to the rotation of the rotor. This design gives the clear advantage of shorter end winding compared to the toothed rotor as there is no overlap winding between field excitation coil (FEC) and armature coil. In this paper the initial design of HEFSM with segmental rotor has been improved by changing segment span, FEC slot area and armature slot area until maximum torque and power of 33.633 Nm and 8.17 KW respectively have been achieved. Moreover coil test analysis, induced voltage, cogging torque, magnetic flux characteristics, torque vs. field current density and torque vs. power speed characteristics are examined on the basis of 2-D finite element analysis (FEA).
Read full abstract