The rapid advancement of image inpainting tools, especially those aimed at removing artifacts, has made digital image manipulation alarmingly accessible. This paper proposes several innovative ideas for detecting inpainting forgeries based on a low-level noise analysis by combining Dual-Tree Complex Wavelet Transform (DT-CWT) for feature extraction with convolutional neural networks (CNN) for forged area detection and localization, and lastly by employing an innovative combination of texture segmentation with noise variance estimations. The DT-CWT offers significant advantages due to its shift-invariance, enhancing its robustness against subtle manipulations during the inpainting process. Furthermore, its directional selectivity allows for the detection of subtle artifacts introduced by inpainting within specific frequency bands and orientations. Various neural network architectures were evaluated and proposed. Lastly, we propose a fusion detection module that combines texture analysis with noise variance estimation to give the forged area. Also, to address the limitations of existing inpainting datasets, particularly their lack of clear separation between inpainted regions and removed objects—which can inadvertently favor detection—we introduced a new dataset named the Real Inpainting Detection Dataset. Our approach was benchmarked against state-of-the-art methods and demonstrated superior performance over all cited alternatives.
Read full abstract