Abstract

In the competitive landscape of steel-strip production, ensuring the high quality of steel surfaces is paramount. Traditionally, human visual inspection has been the primary method for detecting defects, but it suffers from limitations such as reliability, cost, processing time, and accuracy. Visual inspection technologies, particularly automation techniques, have been introduced to address these shortcomings. This paper conducts a thorough survey examining vision-based methodologies related to detecting and classifying surface defects on steel products. These methodologies encompass statistical, spectral, texture segmentation based methods, and machine learning-driven approaches. Furthermore, various classification algorithms, categorized into supervised, semi-supervised, and unsupervised techniques, are discussed. Additionally, the paper outlines the future direction of research focus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call