Posterior cervical spine fixation is a robust strategy for stabilizing the spine for a wide range of spinal disorders. With the evolution of spinal implant technology, posterior fixation with lateral mass screws in the subaxial spine is now common. Despite interest in variable rod diameters to meet a wide range of clinical needs such as trauma, revision, and deformity surgery, indications for use of posterior cervical spine fixation are not clear. This laboratory investigation evaluates the mechanical stability and kinematic properties of lateral mass fixation with various commercially available rod diameters. The authors conducted an ex vivo experiment using 13 fresh-frozen human cervical spine specimens, instrumented from C3 to C6 with lateral mass screws, to evaluate the effects of titanium rod diameter on kinematic stability. Each intact spine was tested using a kinematic profiling machine with an optoelectrical camera and infrared sensors applying 1.5-Nm bending moments to the cranial vertebra (C2) simulating flexion-extension, lateral bending, and axial rotation anatomical motions. A compressive follower preload of 150 N was applied in flexion-extension prior to application of a bending moment. Instrumented spines were then tested with rod diameters of 3.5, 4.0, and 4.5 mm. The kinematic data between intact and surgical cases were studied using a nonparametric Wilcoxon signed-rank test. A multivariable, multilevel linear regression model was built to identify the relationship between segmental motion and rod diameter. Instrumentation resulted in significant reduction in range of motion in all three rod constructs versus intact specimens in flexion-extension, lateral bending, and axial rotation (p < 0.05). The maximum reductions in segmental ROM versus intact spines in 3.5-, 4.0-, and 4.5-mm rod constructs were 61%, 71%, and 81% in flexion-extension; 70%, 76%, and 81% in lateral bending; and 50%, 60%, and 75% in axial rotation, respectively. Segmental motion at the adjacent segments (C2-3 and C6-7) increased significantly (p < 0.05) with increasing rod diameter. The 4.5-mm rod construct had the greatest increase in motion compared to the intact spine. With increasing rod diameters from 3.5 to 4.0 mm, flexion-extension, lateral bending, and axial rotation across C3-6 were significantly reduced (p < 0.05). Similar trends were observed with a statistically significant reduction in motion in all anatomical planes when the rod diameter was increased to 4.5 mm. Although the increase in rod diameter resulted in a more rigid construct, it also created an increase (p < 0.05) in the kinematics of the adjacent segments (C2-3 and C6-7). Whether this increase translates into adverse long-term clinical effects in vivo requires further investigation and clinical assessment.
Read full abstract