Extreme waves can induce seepage in a seabed and cause problems to marine structures in coastal regions. In this study, the seepage under cnoidal waves was studied using the transient seepage equation. An analytical solution is presented for the pore pressure in a seabed of defined thickness. Parametric studies were carried out to examine the influence of air content in the pore water, and of the soil hydraulic conductivity on the seepage. It has been shown that the air content and the soil hydraulic conductivity can affect the pore pressure response significantly. An increase in the air content or a decrease in the soil hydraulic conductivity will increase the magnitude of the pore pressure gradient and results in the pore pressure varying sharply. The liquefaction potential of a seabed under cnoidal waves is discussed. Consequently, comparative studies are carried out to show that the soil shear modulus and Poisson constant can influence the difference between the transient seepage equation and Biot's equation, and the transient seepage equation is a limit of Biot's equation.
Read full abstract