Japanese serissa (Serissa japonica (Thunb.) Thunb.) is a very popular ornamental in Taiwan. During the summer of 2005, serissa plants in a central Taiwan nursery had decaying roots, leaf yellowing, and were wilting. Wilted plants had white fan-like mycelium under the bark. The disease caused 70% loss of seedlings at the nursery. Associated synnemata were rigid, erect, dark, setaceous, 0.8 to 2.1 mm long, 90 to 200 μm wide, and tapering to enlarged whitish gray heads composed of geniculate conidiophores and conidia. Conidia were 3.1 to 5.8 × 2.6 to 3.4 μm, unicellular, hyaline, and subglobal with a truncated base. Root rots were washed, disinfested for 1 min in 0.5% NaOCl, cut into 3 mm3 pieces, plated on Merck (Darmstadt, Germany) potato dextrose agar (PDA) amended with 100 ppm of ampicillin (Sigma, St. Louis, MO), and incubated at 24°C in the dark until hyphae emerged. Single hyphal tips were transferred to PDA, and two isolates were established as pure cultures. Mycelia were cut, stained with 1% cotton blue in lactophenol, and pear-shaped hyphal swellings adjacent to the septa were observed. According to these hyphal, synnematal, and conidial characteristics, the fungus was identified as Dematophora necatrix Hartig, the anamorph of Rosellinia necatrix Prill. Inoculum for pathogenicity tests were produced on oat-wheat medium composed of 20 ml of oat grain and 20 ml of wheat grain, mixed, and soaked in water for 3 h. The grains were placed in 200-ml flasks, autoclaved at 121°C for 30 min, inoculated with two isolates of D. necatrix separately, and grown for 14 days. Six 3-month-old Japanese serissa seedlings were grown in pots. The grain inoculum was added to unsterilized field soil and the plants were transplanted into this mix. Control plants were transplanted into a similar mix without the inoculum. Two replicates were used for a total of 24 inoculated plants and 24 control plants. All plants were kept in a growth chamber at 25 to 35°C with 20 min of irrigation per day, 12 h of irradiation, and relative humidity at more than 95%. Inoculated plants developed root rots after 1 month, and after 4 months, all plants were dead, while control plants remained healthy. D. necatrix was reisolated, hyphal characteristics confirmed, and synnemata were observed on collars of dead plants. The teleomorph was not formed by our cultures, and the identification of Rosellinia necatrix was confirmed by molecular studies. The nuclear ribosomal internal transcribed spacer (ITS) amplified with two primers, ITS1 and ITS4, from our representative isolate demonstrated 99.63, 99.81, and 99.27% similarity to two R. necatrix isolates from Japan and one R. necatrix isolate from Italy, respectively. This disease has been reported on many species of plants (1), but to our knowledge, this is the first report of white root rot of Japanese serissa seedlings caused by R. necatrix in Taiwan. Reference: (1) S. T. Su et al. List of Plant Diseases in Taiwan. The Phytopathological Society of the Republic of China, 2002.
Read full abstract