Conventional all-starch-based (ASB) gels are weak and lack ductility. The preparation of a robust ASB gel with multi-functionalities e.g., self-healing, anti-freezing, conductivity, and so forth, is highly desirable but challenging. Herein, a new kind of ASB gel was prepared by gelatinizing starch in urea and choline chloride solution (UC) with the aid of water. Its tensile strength was up to 1.08 MPa with a tensile strain of 313 %, and this value hardly changed after 10 days ageing. A high healing efficiency of 98 % can be achieved after 1 h of healing at room temperature, and the healed tensile strength reaches up to ca. 1.06 MPa, which is almost the highest value for ASB gel. The resultant ASB gel can surfer from bending and twisting at −80 °C. Moreover, ASB gel also exhibits excellent biocompatibility and biodegradability. In addition, UC endowed the ASB gel with ion conductivity, allowing it to be used as a flexible strain sensor to monitor human movement. The ion-conductive ASB gel also exhibited thermoelectric ability with a Seebeck coefficient of 2.5 mV K−1, which can be further improved to 5 mV K−1 with a maximum output voltage of 252 mV by introducing a gradient of ionic concentration.