AbstractMarine dredging is an excavation activity carried out worldwide by many industries. Concern about the impact dredging has on marine life, including marine mammals (cetaceans, pinnipeds, and sirenians) exists, but effects are largely unknown. Through consulting available literature, this review aims to expand on existing knowledge of the direct and indirect, negative and positive impacts on marine mammals. In terms of direct effects, collisions are possible, but unlikely, given the slow speed of dredgers. Noise emitted is broadband, with most energy below 1 kHz and unlikely to cause damage to marine mammal auditory systems, but masking and behavioural changes are possible. Sediment plumes are generally localized, and marine mammals reside often in turbid waters, so significant impacts from turbidity are improbable. Entrainment, habitat degradation, noise, contaminant remobilization, suspended sediments, and sedimentation can affect benthic, epibenthic, and infaunal communities, which may impact marine mammals indirectly through changes to prey. Eggs and larvae are at highest risk from entrainment, so dredging in spawning areas can be detrimental, but effects are minimized through the use of environmental windows. Sensitive environments such as seagrass beds are at risk from smothering, removal, or damage, but careful planning can reduce degradation. Assessing impacts of contaminant remobilization is difficult, but as long as contaminated sediments are disposed of correctly, remobilization is limited in space and time. Effects of suspended sediments and sedimentation are species-specific, but invertebrates, eggs, and larvae are most vulnerable. Positive effects, including an increase in food, result from greater nutrient loads, but are often short term. Dredging has the potential to impact marine mammals, but effects are species and location-specific, varying also with dredging equipment type. In general, evidence suggests that if management procedures are implemented, effects are most likely to be masking and short-term behavioural alterations and changes to prey availability.
Read full abstract