A synthesis of some results obtained over the period 1979–1982 from a study of beach and surf zone dynamics is presented. The paper deals with the different natural beach states, the process signatures associated with these states, environmental controls on modal beach state, and the temporal variability of beach state and beach profiles. Hydrodynamic processes and the relative contributions of different mechanisms to sediment transport and morphologic change differ dramatically as functions of beach state, that is depending on whether the surf zone and beach are reflective, dissipative or in one of several intermediate states. Depending on beach state, near bottom currents show variations in the relative dominance of motions due to: incident waves, subharmonic oscillations, infragravity oscillations, and mean longshore and rip currents. On reflective beaches, incident waves and subharmonic edge waves are dominant. In highly dissipative surf zones, shoreward decay of incident waves is accompanied by shoreward growth of infragravity energy; in the inner surf zone, currents associated with infragravity standing waves dominate. On intermediate states with pronounced bar-trough (straight or crescentic) topographies, incident wave orbital velocities are generally dominant but significant roles are also played by subharmonic and infragravity standing waves, longshore currents, and rips. The strongest rips and associated feeder currents occur in association with intermediate transverse bar and rip topographies. Long-term consecutive surveys of different beaches with contrasting local environmental conditions provide the data sets for empirical—statistical assessment of beach mobility, direction of change and response to environmental conditions. Conditions of persistently high wave energy combined with abundant and/or fine grained sediment results in maintaining highly dissipative states which exhibit very low mobility. Relatively low mobility is also associated with persistently low-steepness waves acting on coarsegrained beach sediments. In such cases, the modal beach state is reflective. The greatest degree of mobility is associated with intermediate but highly changeable wave conditions, medium grained sediment and a modest or meager sediment supply. Under such conditions, the beach and surf zone tend to alternate among the intermediate states and to exhibit well-developed bar trough and rhythmic topographies. A good association is found between beach state and the environmental parameter Ω = H b ( w ̄ sT ) where H b is breaker height, w ̄ s is mean sediment fall velocity and T is wave period. Temporal variability of beach state reflects, in part, the temporal variability and rate of change of Ω, which, in turn depends on deep-water wave climate and nearshore wave modifications.
Read full abstract