Nanoparticles were formulated with biodegradable monomethoxy (poly ethylene glycol)-poly(lactide-co-glycolide)-monomethoxy (poly ethylene glycol) of three different proportional (PEG-PLGA-PEG, lactic acid: glycolic acid = 80/20, 70/30, 50/50) and the cytotoxicity of nanoparticle was characterized according to US Pharmacopoeia XXIII recommendations on various cell lines, including L929, Chang's hepatocytes, primary mouse myoblasts, osteoblasts, and renal vascular endothelial cells. mIL-18 gene was first condensed by polycationic peptide polylysine (PLL), and then encapsulated in the PEG-PLGA-PEG NPs as a novel multi-polyplex gene delivery system - Polymer-PLL-DNA. (PPDs) After lyopholization, the morphology, particle size, zeta potential, and the integrity of DNA in the NPs were investigated. The expression of mIL-18 gene on CT-26 cells in vitro were determined by western blot, while in vivo efficacy was evaluated by tumor inhibition rate, histological section, and survival curve in pulmonary metastasis of colon cancer in BALB/c mice model. Results showed that the cytotoxicity of blank nanoparticles was related to the degradation properties of the polymers with different compositions. The NPs with LA:GA = 70/30 (NPs-73) was optimal for intravenous injection due to its low cytotoxicity. Physicochemical properties of the PPDs were not changed during the lyopholization, while mIL-18 was successfully expressed in vitro. The anti-tumor efficacy in vivo of PPDs showed improvement especially combined with chemotherapy of cisplatin, and confirmed the promising application of the PPDs system, which compared with any single treatment.