The generation of transmembrane electric potential difference (delta psi) in quinone acceptor complex of proteoliposomes containing core complexes of photosystem II from spinach was studied using for the measurements a direct electrometric technique. Besides the fast increase in the membrane potential associated with the electron transfer between the redox-active tyrosine 161 residue (Y(Z)) in D1 polypeptide and the primary quinone acceptor Q(A), an additional electrogenic phase with tau approximately 0.85 msec at pH 7.3 and the maximal relative amplitude of approximately 11% of the Y(Z)ox Q(A)- phase was observed after the second light flash. The sensitivity of this phase to diuron (an inhibitor of electron transfer between Q(A) and the secondary quinone acceptor Q(B)), the dependence of its amplitude on the light flash parity, and also a decrease in its rate constant with increase in pH indicated that it was due to dismutation of Q(A)- and Q(B)- with the subsequent protonation of a doubly reduced plastoquinone molecule: Q(A)- Q(B)- + 2H+ --> Q(A)Q(B)H2.
Read full abstract