Enkephalins are a class of opioid peptides implicated in several physiological and neuroendocrine responses in vertebrates. In this study, using immunocytochemical or immunofluorescence technique, we examined the neuroanatomical distribution of methionine enkephalin (M-ENK) immunoreactivity in the central nervous system (CNS) of the cichlid fish Oreochromis mossambicus. In the telencephalon, no M-ENK-like-immunoreactive (M-ENK-L-ir) perikarya, but sparsely distributed fibres were detected in the glomerular layer and the granule cell layer of the olfactory bulb. Although intensely labeled M-ENK-L-ir cells and fibres were found in the pallium, no M-ENK immunoreactivity was observed in the subpallium. The preoptic area showed a few M-ENK-L-ir somata and dense innervations of fibres. In the hypothalamic area, M-ENK-L-ir cells and fibres were located in magnocellular and parvocellular subdivisions of the nucleus preopticus, and medial and lateral subdivisions of the nucleus lateralis tuberis. Surrounding the recessus lateralis of the third ventricle, several intensely stained and packed M-ENK-L-ir cells and fibres were seen in dorsal, lateral and ventral subdivisions of the nucleus recessus lateralis. In the diencephalon, M-ENK immunoreactivity was restricted to the habenula, the thalamus, the pretectal area and the nucleus posterior tuberis. Dense aggregations of M-ENK-L-ir fibres were seen in the mesencephalic subdivisions, the optic tectum and the torus semicircularis, whereas a few fusiform M-ENK-L-ir cells and fibres were scattered in the midbrain tegmentum. In the rhombencephalon, different populations of ovoid or spindle shaped M-ENK-L-ir cells were observed in the secondary gustatory nucleus, the sensory trigeminal nerve nucleus, the nucleus reticularis medialis and the vagal motor nucleus, whereas bands of fibres were seen in the rostral spinal cord. Collectively, the widespread distribution of M-ENK immunoreactivity in the CNS suggests a role for this opioid peptide in regulation of neuroendocrine control of reproduction and modulation of sensorimotor functions in fish.