At gas distribution stations (GDSs), the process of throttling (pressure reduction) of natural gas occurs on gas pressure regulators without generating useful energy. If the gas expansion process is created in a turbine, to the shaft where an electric generator is connected, then electricity can be obtained. At the same time, the recycling of secondary energy resources is provided, which is an important component in the efficient use of natural resources. The obtained electric power can be supplied to the external power grid and/or used for the GDS’s own needs. The process of generating electricity at the GDS from gas overpressure energy is an environmentally friendly, energy-saving technology that ensures an uninterrupted, autonomous operation of the GDS in the absence of an external energy supply. The power needs of a GDS with regard to electricity are relatively small (5 ÷ 20 kW). Expansion in throttling devices or turbine flow paths leads to gas cooling with a possible hydrate formation. It is prevented via gas preheating or vortex expansion equipment that keeps the further gas temperature at a necessary level. Turbogenerators can be created on the basis of vortex expansion turbomachines, which have many advantages compared to turbomachines of other types. This article studies how gas pressure (outlet: gas distribution station) and gas preheating (inlet: vortex expansion machine) influence turbogenerator parameters. Nine turbogenerator variants for the power needs of gas distribution stations have been assessed.
Read full abstract