Although seismic response predictions are widely used for engineering structures, their applications in electrical equipment are rare. Overstressing at the bottom of the porcelain insulators during seismic events has made power transformer bushings in substations prone to failure. Thus, this paper proposed and compared six integrated machine learning (ML) models for seismic stress response predictions for porcelain transformer bushings using easily monitored acceleration responses. Metaheuristic algorithms such as particle swarm optimization were employed for architecture tuning. Prediction accuracies for stress response values and classifications were evaluated. Finally, shaking table tests and simulation analyses for a 1100 kV bushing were implemented to validate the accuracy of the six ML models. The results indicated that the proposed ML models can quickly forecast the maximum stress experienced by a porcelain bushing during earthquakes. Swarm intelligence evolutionary technologies could quickly and automatically aid in the retrofitting of architecture for the ML models. The K-nearest neighbor regression model had the best level of prediction accuracy among the six selected ML models for experimental and simulation validations. ML prediction models have clear benefits over frequently used seismic analytical techniques in terms of speed and accuracy for post-earthquake emergency relief in substations.