AbstractA central challenge in community ecology is understanding and predicting the effects of abiotic factors on community assembly. In particular, microbial communities play a central role in the ecosystem, but we do not understand how changing factors like temperature are going to affect community composition or function. In this article, we studied the self-assembly of multiple communities in synthetic environments to understand changes in microbial community composition based on metabolic responses of different functional groups along a temperature gradient. In many microbial communities, different microbial functional groups coexist through the partitioning of carbon sources in an emergent trophic structure (cross-feeding). In this system, respirofermentative bacteria display a preference for the sugars supplied as the only carbon source but secrete secondary carbon sources (organic acids) that are more efficiently consumed by obligate respirators. As a consequence of this trophic structure, the metabolic plasticity of the respirofermenters has downstream consequences for the relative abundance of respirators across temperatures. We found that the effects of different temperatures on microbial composition can largely be described by an increase in fermentation by-products with increasing temperatures from the respirofermentative bacteria. This research highlights the importance of metabolic plasticity and metabolic trade-offs in predicting species interactions and community dynamics across abiotic gradients.