Abstract

Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g−1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.