The ‘Nest’ motif plays a functional role in protein owing to its ligand binding potential aided by geometric concavity. The presence of less favored left-handed conformation (L-state) in its structure makes this concavity possible and in shaping the native chemical environment amenable to stable binding interactions. To understand the persistent appearance of L-state torsion in the Nest motif, we analyzed 0.5μs Molecular Dynamics (MD) simulation trajectories of 35 six-residue peptides (out of a total of 50 large Nest sequences of ≥6 residues) identified in our previous study. Analysis of the MD trajectories of the individual peptides reveals initial L-state in 60% of the peptides persists for >40% of the trajectory. Further, Nests with different sequences appear to adopt a specific conformational state driven by the neighboring L-state residues. The sequences also possess short secondary structures and amino acid repeats, suggesting evolutionary conservation and the specific role of amino acids in locally predisposing the torsion angle to the L-state. These findings help us to understand how L-state conformation is an essential prerequisite in stabilizing the Nest motif and shed light on the sequence-structure-function paradigm in the rational design of peptides and peptidomimetics for therapeutics. Communicated by Ramaswamy H. Sarma
Read full abstract