The exploration of lesions in the mediobasal temporal region (MTR) has challenged generations of neurosurgeons to achieve an appropriate approach. To address this challenge, the extensive use of the paramedian supracerebellar-transtentorial (PST) approach to expose the entire length of the MTR, as well as the fusiform gyrus, was investigated. The authors studied the microsurgical aspects of the PST approach in 20 cadaver brains and 5 cadaver heads under the operating microscope. They evaluated the features, advantages, difficulties, and limitations of the PST approach and refined the surgical technique. They then used the PST approach in 15 patients with large intrinsic MTR tumors (6 patients), tumor in the posterior fusiform gyrus with mediobasal temporal epilepsy (MTE) (1 patient), cavernous malformations in the posterior MTR including the fusiform gyrus (2 patients), or intractable MTE with hippocampal sclerosis (6 patients) from December 2007 to May 2010. Patients ranged in age from 11 to 63 years (mean 35.2 years), and in 9 patients (60%) the lesion was located on the left side. In all patients with neuroepithelial tumors or cavernous malformations, the lesions were completely and safely resected. In all patients with intractable MTE with hippocampal sclerosis, the anterior two-thirds of the parahippocampal gyrus and hippocampus, as well as the amygdala, were removed selectively through the PST approach. There was no surgical morbidity or mortality in this series. Three patients (20%) with high-grade neuroepithelial tumors underwent postoperative radiotherapy and chemotherapy but needed a second surgery for recurrence during the follow-up period. In all patients with MTE, antiepileptic medication could be decreased to a single drug at lower doses, and no seizure activity has occurred until this point. The PST approach provides the surgeon precise anatomical orientation when exposing the entire length of the MTR, as well as the fusiform gyrus, for removing any lesion. This is a novel technique especially for removing tumors involving the entire MTR in a single session without damaging neighboring neural or vascular structures. This approach can also be a viable alternative for selective removal of the parahippocampal gyrus, hippocampus, and amygdala in patients with MTE due to hippocampal sclerosis.