Within the rigorous axiomatic framework for the description of quantum mechanical systems with a large number of degrees of freedom, we show that the nonequilibrium steady state, constructed in the quasifree fermionic system corresponding to the isotropic XY chain in which a finite sample, coupled to two thermal reservoirs at different temperatures, is exposed to a local external magnetic field, is breaking translation invariance and exhibits a strictly positive entropy production rate. Moreover, we prove that there exists a second-order nonequilibrium quantum phase transition with respect to the strength of the magnetic field as soon as the system is truly out of equilibrium.
Read full abstract