We consider the class of evolution equations of the form [Formula: see text], [Formula: see text], that describe pseudo-spherical surfaces. These were classified by Chern and Tenenblat in [Pseudospherical surfaces and evolution equations, Stud. Appl. Math 74 (1986) 55–83.]. This class of equations is characterized by the property that to each solution of such an equation, there corresponds a 2-dimensional Riemannian metric of constant curvature [Formula: see text]. Motivated by the special properties of the sine-Gordon equation, we investigate the following problem: given such a metric, is there a local isometric immersion in [Formula: see text] such that the coefficients of the second fundamental form of the immersed surface depend on a jet of finite order of [Formula: see text]? We extend our earlier results for second-order evolution equations [N. Kahouadji, N. Kamran and K. Tenenblat, Local isometric immersions of pseudo-spherical surfaces and evolution equations, Fields Inst. Commun. 75 (2015) 369–381; N. Kahouadji, N. Kamran and K. Tenenblat, Second-order equations and local isometric immersions of pseudo-spherical surfaces, Comm. Anal. Geom. 24(3) (2016) 605–643.] to [Formula: see text]th order equations by proving that there is only one type of equation that admit such an isometric immersion. More precisely, we prove under the condition of finite jet dependency that the coefficients of the second fundamental forms of the local isometric immersion determined by the solutions [Formula: see text] are universal, i.e. they are independent of [Formula: see text]. Moreover, we show that there exists a foliation of the domain of the parameters of the surface by straight lines with the property that the mean curvature of the surface is constant along the images of these straight lines under the isometric immersion.
Read full abstract