Our research focuses on the development of domain decomposition preconditioners tailored for second-order elliptic partial differential equations. Our approach addresses two major challenges simultaneously: i) effectively handling coefficients with high-contrast and multiscale properties, and ii) accommodating irregular domains in the original problem, the coarse mesh, and the subdomain partition. The robustness of our preconditioners is crucial for real-world applications, such as the efficient and accurate modeling of subsurface flow in porous media and other important domains.The core of our method lies in the construction of a suitable partition of unity functions and coarse spaces utilizing local spectral information. Leveraging these components, we implement a two-level additive Schwarz preconditioner. We demonstrate that the condition number of the preconditioned systems is bounded with a bound that is independent of the contrast. Our claims are further substantiated through selected numerical experiments, which confirm the robustness of our preconditioners.
Read full abstract