Abstract
A Hermite fitted block integrator (HFBI) for numerically solving second-order anisotropic elliptic partial differential equations (PDEs) was developed, analyzed, and implemented in this study. The method was derived through collocation and interpolation techniques using the Hermite polynomial as the basis function. The Hermite polynomial was interpolated at the first two successive points, while the collocation occurred at all the suitably chosen points. The major scheme and its complementary scheme were united together to form the HFBI. The analysis of the HFBI showed that it had a convergence order of eight with small error constants, was zero-stable, absolutely-stable, and satisfied the condition for convergence. In order to confirm the usefulness, accuracy, and efficiency of the HFBI, the method of lines approach was applied to discretize the second-order anisotropic elliptic partial differential equation PDE into a system of second-order ODEs and consequently used the derived HFBI to obtain the approximate solutions for the PDEs. The computed solution generated by using the HFBI was compared to the exact solutions of the problems and other existing methods in the literature. The proposed method compared favorably with other existing methods, which were validated through test problems whose solutions are presented in tabular form, and the comparisons are illustrated in the curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.